The volitional brain in a coercive world of disinformation: The neural processes underlying our susceptibility and resilience to disinformation

Herculano-Houzel 2009	Human brain	
Brain mass	1508 g	
Total number of neurons in brain	86 billion	
Total number of non-neurons in brain	85 billion	
Mass, cerebral cortex	1233 g	
Neurons, cerebral cortex	16 billion	
Relative size of the cerebral cortex	82% of brain mass	
Relative number of neurons in cerebral cortex	19% of brain neurons	
Mass, cerebellum	154 g	
Neurons, cerebellum	69 billion	
Relative size of the cerebellum	10% of brain mass	

Myelinated fibers: 180K KM Neocortex synapses: 0.15 10^15 (quadrillion) Bee: 950K neurons Neuron loss: 85K/day

Comparison brain weight: Sperm whale: 7,800G Fin whale: 6,930 Elephant: 4,783 Humpback whale: 4,675 Gray whale: 4,317

Power: 20W

Pakkenberg et al., 1997; 2003

https://faculty.washington.edu/chudler/facts.html

2.000 Million years ago

Brains share design common principles

Mammals

capybara

1600 M

Insects

landuca sexta

The brain maintains an equilibrium between the organism and its environment

Claude Bernard (1813-1878)

Ivan Petrovich Pavlov (1849 – 1936)

The embodied brain controls ACTION

eodyne.com

The embodied brain solves trade-offs

specs-lab.com

Verschure (1992) RAS; (2003) Nature; (2012) BICA; (2014; 2016) Phil.Tr.Roy.Soc B

The embodied brain solves trade-offs

specs-lab.com

Verschure (1992) RAS; (2003) Nature; (2012) BICA; (2014; 2016) Phil.Tr.Roy.Soc B

The brain fast and slow

Verschure (1992) RAS; (2003) Nature; (2012) BICA; (2014; 2016) Phil.Tr.Roy.Soc B specs-lab.com

Daniel Kahneman

Michael Gazzaniga the star star star

WHO'S IN CHARGE?

FREE WILL AND THE SCIENCE OF THE BRAIN

P to the top top top top top 合 小小 小小 小小 小小 いろう

MICHAEL S. GAZZANIGA

**** An esta star star star star

The Brain in Plato's Cave

There is no direct access to information

The brain as a constructive empiricist

Bas van Fraasen

"Facts" are constructed by the brain

Predictive coding in the "Bayesian brain" Α

The Free Energy Principle Friston 2010 Nat Rev Neurosci.

internal model

topdown

DEUTSCH

unpredicted environment

sensory input

Figure from: Haker et al 2016 Front. Psych

The brain as a constructive empiricist

A Predictive coding in the "Bayesian brain"

Minimising prediction error by action в

The Free Energy Principle Friston 2010 Nat Rev Neurosci.

Minimising prediction error by learning С

"explaining away"

The brain is driven by surprise/error

in the "Bayesian brain"

Cerebellar de Nuclei

Ten Brinke et al 2015 Cell Reports

0

Time (s)

The brain is driven by surprise/error

Example from classical conditioning

Maffei et al., 2017 Phil Tr Roy Soc B

Ten Brinke et al 2015 Cell Reports

Dopamine and the expectation of reward

in the "Bayesian brain"

Touch apple

Touch wire

Schultz (2015) Physiol Rev

Monkeys like apples

Dopamine and the expectation of reward

Touch apple

in the "Bayesian brain"

Schultz (2015) Physiol Rev

Monkeys like the prediction of apples

Arbitration, Regulation & (Neuro)Modulation to control action in a partially knowable world

C DOPAMINE

'fight or flight'

Sleep, Mood, Emotion

D ACETYLCHOLINE

Attention, Emotion

(Brain) Architectures provide Constraints that Deconstrain

It is NOT about the apps, it is about the operating system - iOS- of the brain

Verschure (2014; 2016) Phil.Tr.Roy.Soc B

specs-lab.com

Doyle & Cseste 2011 PNAS

Kirschner & Gerhart 2006

(Brain) Architectures provide Constraints that Deconstrain

Verschure (2014; 2016) Phil.Tr.Roy.Soc B

specs-lab.com

It is NOT about the apps, it is about the operating system - iOS- of the brain

Virtual perceptual error reduction: Acquired non-use use case

in the "Bayesian brain"

Paretic arm visual error minimization

Ballester et al (2014; 2016) ESC; JNER

eodyne.com

Hacking the brain's error processing for good in stroke neurorehabilitation

Paul Verschure

specs-lab.com

Solving acquired non-use by hacking the brain's error tracking

in the "Bayesian brain"

Hacking the brain's error processing for good in stroke neurorehabilitation

specs-lab.com

The economy of emotions: attacks the brain's operating system

Bakir & Andrew McStay 2018 Dig Journ.

Huszár et al (2022). Algorithmic amplification of politics on Twitter. PNAS

eodyne.com

Negative emotions decontextualises experience and memory AND drive (re)action, i.e. clicks

Paul Verschure

specs-lab.com

IGH IMPACT > NEUTRA

Disinformation: The brain against algorithms

eodyne.com

Building resilience

Bird & Burgess 2008 Nat Rev Neurosci

The brain comprises multiple memory systems

HM and memory deficits

ΗM

Henry Gustav Molaison

(1926 – 2008)

Hippocampus is critical for episodic-contextual memory

Normal Brain

NOTE THE RESULTS OF HIS BILATERAL MEDIAL TEMPORAL LOBE RESECTION AND THE REMOVAL OF THE HIPPOCAMPUS

Neurophysiology of volition and memory

Nuce' orners

Rescalificationerta.

A settlem

antalcole Franktole Gintlendule:

Terroritists

and a Supor al

internal a

Rolling middle argumentation in the

(K) (*** historie : CLEMENT T 1.1.1

- HARDER Variacrice//C in state licente

> Fa som tala _____intering

> > Term which and the second

eodyne.com

Volition versus yoked (coercive) control

Patient (ASJ)

Prefrontal Cortex

Frontal

Parietal

Ant hipp

Post hipp

Markers

Frontal

Spearman's correlations of band pass filtered activity over time (100 ms)

Hippocampus

Pacheco et al (2021) PNAS eodyne.com

Freely navigate to the red blocks & remember the image

+ correlations

specs-lab.com

Volition drives (Theta) Oscillations in the Human Brain Memory is driven by VOLUNTARY ACTION

eodyne.com

TABLE I. THE FREQUENCY BANDS OF EEG SIGNALS

Waves	Frequency bands (Hz)	Behaviour Trait	Signal Wa
Delta	0.3 – 4	Deep sleep	13 62 64
Theta	4-8	Deep Meditation	
Alpha	8 – 13	Eyes closed, awake	
Beta	13 - 30	Eyes opened, thinking	mymmy
Gamma	30 and above	Unifying consciousness	www.www.www.www.

Paul Verschure

specs-lab.com

How to decode a complex brain responses?

.1

Theta < 10Hz

Pacheco et al 2019 Nat Comm

eodyne.com

Alpha < 15Hz

Beta < 30Hz

Gamma > 30Hz

Reinstatement analysis

Kriegeskorte, et al 2008 Front. Syst. Neurosci. Watrous, et al 2015 Curr. Opin. Neurobiol. <u>eodyne.com</u>

Paul Verschure

Pacheco et al 2019 Nat Comm

Reinstatement analysis: The brain choir

Kriegeskorte, et al 2008 Front. Syst. Neurosci. Watrous, et al 2015 Curr. Opin. Neurobiol.

Pacheco et al 2019 Nat Comm

Let the voluntary brain actively explore information

0

Introduksjon

=

Christian Wee Ingeborg Hjorth Arnhild Jordet Ingvild Hagen Kjørholt

Falstad memorial

1945

2018

2017 -

futurememoryfoundation.org

Some observations: It is not about the humans it is about the algorithms that exploit the operating system of the brain

eodyne.com

Advertising Popularit

orecasting

Some observations

- We need to understand the way the brain processes, mediates and reacts to (dis)information
- Information > Brain > Action <.....> Information > Algorithm > Action • We are up against algorithms not humans
- The quest of the "learned ignorati"
- Risk of instrumentalization of the Commons
- Social media algorithms are a mental health risk and must therefore satisfy CEII
 - Self-monitoring is not enough!

eodyne.com

Synthetic, Perceptive, Emotive and Cognitive Systems group

Type of funding scheme: RIA Work program topics addressed: H2020 Societal Changes Health, demographic change and wellbeing Name of me soordinating person: RGS@home Prof. D. Cra Ritter Departinence recurology With Experimental Neurology

